869 research outputs found

    High-resolution single-pulse studies of the Vela Pulsar

    Get PDF
    We present high-resolution multi-frequency single-pulse observations of the Vela pulsar, PSR B0833-45, aimed at studying micro-structure, phase-resolved intensity fluctuations and energy distributions at 1.41 and 2.30 GHz. We show that the micro-pulse width in pulsars has a period dependence. Like individual pulses, Vela's micro-pulses are highly elliptically polarized. There is a strong correlation between Stokes parameters V and I in the micro-structure. We show that the V/I distribution is Gaussian with a narrow width and that this width appears to be constant as a function of pulse phase. The phase-resolved intensity distributions of I are best fitted with log-normal statistics. Extra emission components, i.e.``bump'' and ``giant micro-pulses'', discovered by Johnston et al.(2001) are also present at 2.3 GHz. The bump component seems to be an extra component superposed on the main pulse profile but does not appear periodically. The giant micro-pulses are time-resolved and have significant jitter in their arrival times. Their flux density distribution is best fitted by a power-law, indicating a link between these features and ``classical'' giant pulses as observed for the Crab pulsar, (PSR B0531+21), PSR B1937+21 and PSR B1821-24. We find that Vela contains a mixture of emission properties representing both ``classical'' properties of radio pulsars (e.g. micro-structure, high degree of polarization, S-like position angle swing, orthogonal modes) and features which are most likely related to high-energy emission (e.g. extra profile components, giant micro-pulses). It hence represents an ideal test case to study the relationship between radio and high-energy emission in significant detail.Comment: accepted for publication in MNRAS (11 pages, 10 figures

    Radio Astronomical Polarimetry and High-Precision Pulsar Timing

    Full text link
    A new method of matrix template matching is presented in the context of pulsar timing analysis. Pulse arrival times are typically measured using only the observed total intensity light curve. The new technique exploits the additional timing information available in the polarization of the pulsar signal by modeling the transformation between two polarized light curves in the Fourier domain. For a number of millisecond pulsars, arrival time estimates derived from polarimetric data are predicted to exhibit greater precision and accuracy than those derived from the total intensity alone. Furthermore, the transformation matrix produced during template matching may be used to calibrate observations of other point sources. Unpublished supplementary material is appended after the bibliography.Comment: 13 pages, 3 figures, published in ApJ, includes supplementary material that was not submitted to The Astrophysical Journal and has not been peer reviewe

    DSPSR: Digital Signal Processing Software for Pulsar Astronomy

    Full text link
    DSPSR is a high-performance, open-source, object-oriented, digital signal processing software library and application suite for use in radio pulsar astronomy. Written primarily in C++, the library implements an extensive range of modular algorithms that can optionally exploit both multiple-core processors and general-purpose graphics processing units. After over a decade of research and development, DSPSR is now stable and in widespread use in the community. This paper presents a detailed description of its functionality, justification of major design decisions, analysis of phase-coherent dispersion removal algorithms, and demonstration of performance on some contemporary microprocessor architectures.Comment: 15 pages, 10 figures, to be published in PAS

    PSRCHIVE and PSRFITS: Definition of the Stokes Parameters and Instrumental Basis Conventions

    Full text link
    This paper defines the mathematical convention adopted to describe an electromagnetic wave and its polarisation state, as implemented in the PSRCHIVE software and represented in the PSRFITS definition. Contrast is made between the convention that has been widely accepted by pulsar astronomers and the IAU/IEEE definitions of the Stokes parameters. The former is adopted as the PSR/IEEE convention, and a set of useful parameters are presented for describing the differences between the PSR/IEEE standard and the conventions (either implicit or explicit) that form part of the design of observatory instrumentation. To aid in the empirical determination of instrumental convention parameters, well-calibrated average polarisation profiles of PSR J0304+1932 and PSR J0742-2822 are presented at radio wavelengths of approximately 10, 20, and 40 cm.Comment: 7 pages, 2 figures, to be published in PAS

    Radio astronomical polarimetry and phase-coherent matrix convolution

    Get PDF
    A new phase-coherent technique for the calibration of polarimetric data is presented. Similar to the one-dimensional form of convolution, data are multiplied by the response function in the frequency domain. Therefore, the system response may be corrected with arbitrarily high spectral resolution, effectively treating the problem of bandwidth depolarization. As well, the original temporal resolution of the data is retained. The method is therefore particularly useful in the study of radio pulsars, where high time resolution and polarization purity are essential requirements of high-precision timing. As a demonstration of the technique, it is applied to full-polarization baseband recordings of the nearby millisecond pulsar, PSR J0437-4715.Comment: 8 pages, 4 figures, accepted for publication in Ap

    Are the distributions of Fast Radio Burst properties consistent with a cosmological population?

    Get PDF
    High time resolution radio surveys over the last few years have discovered a population of millisecond-duration transient bursts called Fast Radio Bursts (FRBs), which remain of unknown origin. FRBs exhibit dispersion consistent with propagation through a cold plasma and dispersion measures indicative of an origin at cosmological distances. In this paper we perform Monte Carlo simulations of a cosmological population of FRBs, based on assumptions consistent with observations of their energy distribution, their spatial density as a function of redshift and the properties of the interstellar and intergalactic media. We examine whether the dispersion measures, fluences, inferred redshifts, signal-to-noises and effective widths of known FRBs are consistent with a cosmological population. Statistical analyses indicate that at least 50 events at Parkes are required to distinguish between a constant co-moving FRB density, and a FRB density that evolves with redshift like the cosmological star formation rate density.Comment: 11 pages, 7 figures, 3 table

    High signal-to-noise ratio observations and the ultimate limits of precision pulsar timing

    Full text link
    We demonstrate that the sensitivity of high-precision pulsar timing experiments will be ultimately limited by the broadband intensity modulation that is intrinsic to the pulsar's stochastic radio signal. That is, as the peak flux of the pulsar approaches that of the system equivalent flux density, neither greater antenna gain nor increased instrumental bandwidth will improve timing precision. These conclusions proceed from an analysis of the covariance matrix used to characterise residual pulse profile fluctuations following the template matching procedure for arrival time estimation. We perform such an analysis on 25 hours of high-precision timing observations of the closest and brightest millisecond pulsar, PSR J0437-4715. In these data, the standard deviation of the post-fit arrival time residuals is approximately four times greater than that predicted by considering the system equivalent flux density, mean pulsar flux and the effective width of the pulsed emission. We develop a technique based on principal component analysis to mitigate the effects of shape variations on arrival time estimation and demonstrate its validity using a number of illustrative simulations. When applied to our observations, the method reduces arrival time residual noise by approximately 20%. We conclude that, owing primarily to the intrinsic variability of the radio emission from PSR J0437-4715 at 20 cm, timing precision in this observing band better than 30 - 40 ns in one hour is highly unlikely, regardless of future improvements in antenna gain or instrumental bandwidth. We describe the intrinsic variability of the pulsar signal as stochastic wideband impulse modulated self-noise (SWIMS) and argue that SWIMS will likely limit the timing precision of every millisecond pulsar currently observed by Pulsar Timing Array projects as larger and more sensitive antennae are built in the coming decades.Comment: 16 pages, 9 figures, accepted for publication in MNRAS. Updated version: added DOI and changed manuscript to reflect changes in the final published versio
    • …
    corecore